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Abstract

The new PHOENIX code is discussed together with a sample of many new results that are obtained concerning mag-
netohydrodynamic (MHD) spectra of axisymmetric plasmas where flow and gravity are consistently taken into account.
PHOENIX, developed from the CASTOR code [W. Kerner, J.P. Goedbloed, G.T.A. Huysmans, S. Poedts, E. Schwarz, J.
Comput. Phys. 142 (1998) 271], incorporates purely toroidal, or both toroidal and poloidal flow and external gravitational
fields to compute the entire ideal or resistive MHD spectrum for general tokamak or accretion disk configurations. These
equilibria are computed by means of FINESSE [A.J.C. Beliën, M.A. Botchev, J.P. Goedbloed, B. van der Holst, R. Kep-
pens, J. Comp. Physics 182 (2002) 91], which discriminates between the different elliptic flow regimes that may occur.
PHOENIX makes use of a finite element method in combination with a spectral method for the discretization. This leads
to a large generalized eigenvalue problem, which is solved by means of Jacobi–Davidson algorithm [G.L.G. Sleijpen, H.A.
van der Vorst, SIAM J. Matrix Anal. Appl. 17 (1996) 401].

PHOENIX is compared with CASTOR, PEST-1 and ERATO for an internal mode of Soloviev equilibria. Further-
more, the resistive internal kink mode has been computed to demonstrate that the code can accurately handle small values
for the resistivity. A new reference test case for a Soloviev-like equilibrium with toroidal flow shows that, on a particular
unstable mode, the flow has a quantifiable stabilizing effect regardless of the direction of the flow. PHOENIX reproduces
the Toroidal Flow induced Alfvén Eigenmode (TFAE, [B. van der Holst, A.J.C. Beliën, J.P. Goedbloed, Phys. Rev. Lett.
84 (2000) 2865]) where finite resistivity in combination with equilibrium flow effects causes resonant damping. Localized
ideal gap modes are presented for tokamak plasmas with toroidal and poloidal flow. Finally, we demonstrate the ability
to spectrally diagnose magnetized accretion disk equilibria where gravity acts together with either purely toroidal flow or
both toroidal and poloidal flow. These cases show that the MHD continua can be unstable or overstable due to the pres-
ence of a gravitational field together with equilibrium flow-driven dynamics [J.P. Goedbloed, A.J.C. Beliën, B. van der
Holst, R. Keppens, Phys. Plasmas 11 (2004) 28].
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1. Introduction

In current tokamak experiments, plasma flows play an ever more important role for the determination of
plasma equilibrium, stability and transport properties. The flows induced by neutral beam injection are mainly
in the toroidal direction. Recently, there are indications that the plasma also rotates in the poloidal direction,
see for example Crombé et al. [10] and Busch et al. [7]. In an astrophysical accretion torus or disk, the plasma
rotates in the toroidal direction but also experiences the influence of an external gravitational field caused by
the central accreting object, like a young stellar object, neutron star or black hole. To investigate the stability
properties of tokamak or accretion disk plasmas, flow and gravity have to be taken into account in both the
equilibrium and the stability studies.

Computing equilibria and stability of rotating plasmas becomes a real tour de force when the poloidal
flow velocity is not restricted to small values since the different characteristic MHD speeds give rise to
‘‘transsonic’’ flow transitions when the stationary equilibria change from elliptic to hyperbolic, or vica versa.
In general, stationary equilibrium solvers break down in the hyperbolic flow regimes and we may even ques-
tion whether the whole scheme of distinguishing between equilibrium and perturbation makes sense there
(Goedbloed [14,15]). In the recently developed equilibrium code FINESSE [2], this problem has been
addressed by distinguishing between the different flow regimes and avoiding the hyperbolic ones. Subse-
quently, FINESSE has been used in combination with the a new MHD stability code PHOENIX to deter-
mine the stability of transsonic flows in the second elliptic flow regime for tokamak as well as accretion disks
(Goedbloed et al. [17,16]). Hence, although the duo FINESSE–PHOENIX has been used for several cases
and produced important physical results, the second part of it has not yet been documented in the literature.
This is done here.

The magnetohydrodynamical (MHD) model is used to describe the macroscopic behaviour of the plasma.
The tokamak or disk equilibrium is then modeled by a stationary solution of the ideal MHD equations taking
the plasma flows into account. We will restrict our numerical analysis to stationary solutions which are either
translationally symmetric or axisymmetric, consisting of nested closed flux surfaces contained within an arbi-
trarily shaped outer boundary. The stationary states are all computed with FINESSE [2] in the elliptic flow
regime, where a split between equilibrium and perturbations can meaningfully be performed. The perturba-
tions about this equilibrium are solved by means of the linearized MHD equations, which may include dissi-
pative effects. The stability analysis itself is done in a flux coordinate system based on the specific equilibrium
to obtain reliable and accurate results, as in e.g. CASTOR [37] and ERATO [25].

PHOENIX, in its original algorithmic design based on the widely used and rigorously tested CASTOR
code [37], is able to perform a stability analysis of any 2D elliptic equilibrium with or without flow. The flow
itself may be purely toroidal or both toroidal and poloidal. In the latter case, the poloidal rotation is not intro-
duced in the first place with application to tokamaks as a goal, but rather to treat the enormous range of astro-
physical plasmas, e.g. in accretion disks, that have large flows in the poloidal plane. For those plasmas, a fluid
model is quite appropriate. For tokamaks, the fluid model may not always be adequate, as indicated by Stix
[50], Hirshman [30], Shaing and Hirshman [47], Taguchi [53], Hsu et al. [33] and Morris et al. [38]. These
authors discussed that in a tokamak the poloidal flow is damped due to viscous drag. This drag will not be
taken into account. Nevertheless, the fluid solutions could be useful to guide simulations with particle-in-cell
methods.

PHOENIX makes use of a finite element representation of the dynamics across flux surfaces in combination
with a Galerkin method, which provides a flexible and highly accurate numerical approximation. The Galer-
kin has been exploited because it is more generally applicable, in particular to dissipative plasmas. This
method has been widely used in spectral studies for dissipative plasmas (e.g. ERATO [25] and CASTOR
[37]), based on concepts discussed by Strang and Fix [51]. Convergence for spectra has been a central issue
in these studies, starting with the book by Gruber and Rappaz [24], but later extended to dissipative plasmas
in many paper by Kerner et al. (see in particular the paper about CASTOR [37]). Note that the Galerkin
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method has been chosen in particular because it is so much more powerful than the ideal MHD variational
principle. Recently, a new code CASTOR–FLOW [52], also based on the CASTOR code [37], has been pre-
sented. This code is also able to take into account the plasma flow, but only in the toroidal direction and it is
not generalized to gravitating plasmas of interest for astrophysical studies.

In general, stability studies in linear dissipative MHD give rise to non-Hermitian matrices and complex
generalized eigenvalue problems. Ideal MHD spectral analysis of flowing equilibria also yield complex
eigenvalues. Therefore, the discretization used, as well as the linear eigenvalue solver, has to be chosen
carefully to avoid non-physical eigenvalues. The computation of the eigenvalues and eigenfunctions has
been done by making use of the Jacobi–Davidson algorithm [48]. This recently developed powerful algo-
rithm is an iterative Krylov subspace method, and we demonstrate its use for MHD spectroscopy in this
paper.

The paper is organized as follows. In Section 2, we present the basic equations, discuss the equilibrium con-
siderations, the spectral equations, the straight field line coordinates, and the projections used. In Section 3,
the spectral analysis is presented. This section is split into three sections where the quadratic forms, the
employed discretization, and the Jacobi–Davidson algorithm [48] are presented in full detail. In Section 4,
new results are presented along with a reproduction of some standard static MHD spectral results. The
new results provide many new test cases, covering cases with purely toroidal flow, with or without gravity,
and cases with both toroidal and poloidal flow, again with or without gravity. Finally, in Section 5 we sum-
marize and present our conclusions. Appendix A contains the equations which describe equilibria with purely
toroidal flow, with or without gravity. For completeness and further reference, the matrix elements as they
appear in the actual implementation are listed in Appendix B.

2. Basic equations

The plasma inside a tokamak or accretion disk can in a first, macroscopic approximation be modeled by
making use of the single-fluid MHD equations. These equations are:
oq
ot
¼ �r � ðqvÞ; ð1Þ

q
ov

ot
¼ �qv � rv�rp þ j� B� qrUgrav; ð2Þ

op
ot
¼ �v � rp � cpr � v; ð3Þ

oB

ot
¼ �r� E; ð4Þ
where the variables q, v, p, B, Ugrav and c are the density, velocity, thermal pressure, magnetic field, external
gravitational potential and the ratio of the specific heats, respectively. Here, the current density j ¼ r� B.
Furthermore, the simplified Ohm’s law E ¼ �v� Bþ gj and the equation r � B ¼ 0 must be satisfied. Here,
g is the resistivity. The relation between the thermal pressure p and plasma temperature T is expressed by the
ideal gas law, p ¼ qT . We have used a dimensionalization such that the permeability of vacuum l0 = 1. Notice
that in the equation for the internal energy we neglect the non-ideal term ðc� 1Þgj2. This assumption has also
been used in the CASTOR code [37].
2.1. Equilibrium considerations

It is assumed that equilibria with toroidal and poloidal flow inside a tokamak or accretion disk are
time-independent and that the resistivity can be neglected for the characterization of the equilibrium topol-
ogy. Such equilibria have to satisfy the coupled generalized Grad–Shafranov equation and algebraic
Bernoulli equation for the squared poloidal Alfvén Mach number M2 � qv2

p=B2
p, where vp and Bp are

the poloidal velocity and poloidal magnetic field, respectively [29,17]. The equilibrium quantities can then
be written as
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p ¼ qcS;

B ¼ ru�rWþ Bueu; RBu ¼
I þ v0XR2

1�M2
;

V ¼ v0

q
ru�rWþ V ueu;

V u

R
¼ Xþ ðv0=qÞI=R2

1�M2
;

ð5Þ
where the entropy S, the poloidal velocity stream function v, poloidal vorticity–current density stream func-
tion I and the derivative of the electric potential X are arbitrary functions which only depend on the poloidal
magnetic flux function WðR; ZÞ. Here, R is the radius, Z is the vertical coordinate, u is the toroidal angle in an
ðR; Z;uÞ coordinate system and the prime indicates the derivative with respect to W. Codes which are able to
compute the numerical solution of the generalized Grad–Shafranov and Bernoulli equation are CLIO [45],
FINESSE [2] and FLOW [26]. FINESSE takes special care of the existence of elliptic and hyperbolic flow re-
gimes (Zelazny et al. [55]), which ensures that the solution always lies in one of the three existing elliptic flow
regimes, namely sub-slow, slow, and fast flow regime. CLIO and FINESSE are both finite element codes and
use a Picard iteration scheme while FLOW uses a multi-grid approach to solve the coupled generalized Grad–
Shafranov and Bernoulli equation. Besides the numerical approach, the codes also differ in taking into account
different physical effects. The FINESSE code is able to take into account external gravity. Meanwhile, FLOW
is able to handle finite pressure anisotropy. The static or stationary equilibria used in this paper are computed
using the FINESSE code. This code uses an isoparametric bicubic Hermite finite element method in combi-
nation with an (inner) Picard iteration and an extra outer iteration combined with an algebraic solver for
the Bernoulli equation in case of poloidally flowing equilibria to compute the solution. The imposed boundary
conditions are such that the boundary represents the last closed flux surface. The geometry of a tokamak or
accretion disk for a circular cross-section is illustrated in Fig. 1. For the computations, the major radius of the
geometric axis R0 and the radius a of the last closed flux surface enter through the inverse aspect ratio
� � a=R0. The FINESSE code recovers the solution for static equilibria as produced by HELENA [34] and
extends the latter to handle equilibria with purely toroidal flow with or without gravity. The complete details
of this extension for the various cases implemented can be found in Appendix A.

2.2. Spectral equations

The MHD equations (1)–(4) are linearized about the time-independent equilibrium with time-dependent

fluctuations,
yðr; tÞ ¼ y0ðrÞ þ y1ðrÞekt ð6Þ
where from now on we suppress the subscript 0. The linearized resistive MHD equations are
The geometry of a tokamak or accretion disk plasma with a circular poloidal cross-section. Here, R0 is the major radius of the
tric axis and a is the radius of the last closed flux surface.
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kq1 ¼ �r � ðqv1Þ � r � ðq1VÞ; ð7Þ
kqv1 ¼ �q1V � rV� qðv1 � rVþ V � rv1Þ � rðqT 1 þ q1T Þ

þ ðr � BÞ � ðr � A1Þ � B� ðr �r� A1Þ � q1rUgrav; ð8Þ
kqT 1 ¼ �q1V � rT � qv1 � rT � qV � rT 1 � ðc� 1ÞðqT 1 þ q1T Þr � V� ðc� 1Þpr � v1; ð9Þ
kA1 ¼ v1 � Bþ V� ðr � A1Þ � gr� ðr� A1Þ; ð10Þ
where A1 is the perturbed vector potential. The perturbed vector potential formulation is used to make sure
that the perturbed magnetic field B1 ¼ r� A1 always satisfies the equation r � B1 ¼ 0.

2.3. Straight field line coordinates

The linearized resistive MHD equations (7)–(10) are expressed in straight field coordinates. In these coor-
dinates the magnetic field lines become straight in the ð#;uÞ-plane, where # is the straight field line angle. The
contravariant and covariant base vectors of this non-orthogonal coordinate system are
a1 ¼ rs; a1 ¼ fJr#�ru;

a2 ¼ r#; a2 ¼ fJru�rs;

a3 ¼ ru; a3 ¼ fJrs�r#;
ð11Þ
where s �
ffiffiffiffi
W
p

, where W is now a normalized flux function reaching unit value at the boundary, f ¼ dW=ds,
and the Jacobian J is defined by
J ¼ ðrW�r# � ruÞ�1
: ð12Þ
Knowing the base vectors, it is straightforward to derive the components of the metric tensor gij. The non-zero
elements are
g11 ¼ jrsj2; g11 ¼
f 2J 2

R2
jr#j2;

g12 ¼ rs � r# ¼ g21; g12 ¼ �
fJ 2

R2
rW � r# ¼ g21;

g22 ¼ jr#j2; g22 ¼
J 2

R2
jrWj2;

g33 ¼ jruj2 ¼ 1

R2
; g33 ¼ R2:

ð13Þ
These are needed to express the linearized resistive MHD equations in straight field line coordinates. Further-
more, in these coordinates one can derive an expression for the safety factor q,
du
d#

����
field line

¼ B � ru
B � r# ¼

BuJ
R
¼ qðWÞ: ð14Þ
Using this expression and Eq. (5) for the toroidal magnetic field, the Jacobian J can be expressed as follows:
J ¼ qR2 1�M2

I þ v0XR2
: ð15Þ
Note the considerably more complex relation between J and q than for static equilibria or equilibria with
purely toroidal flow.

2.4. Projections

The equation for the perturbed velocity v1 (8) and perturbed vector potential A1 (10) are projected on the
straight field line coordinates. This kind of projection is similar as the one used in ERATO [25] and CASTOR
[37]. The perturbed velocity has been projected as follows:
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v1 � �v1Jr#�ruþ 1

if
�v2Jru�rWþ 1

if
�v3JB; ð16Þ
where �v1 and �v2 actually correspond to the contravariant velocity components, while �v3 represents the slow
magnetosonic modes in the case of a homogeneous equilibrium. Notice the subtle difference, J versus R2 factor
in front of the contravariant components, between (16) for v1 and the expression used in CASTOR [37]. This is
due to the more complicated expression for the Jacobian J in the case of equilibria with both toroidal and
poloidal flows.

In contrast with the perturbed velocity, the perturbed vector potential is expressed in terms of the covariant
components:
A1 �
1

if
A1rWþ A2r#þ A3ru: ð17Þ
Furthermore, the perturbed density and temperature have been rescaled as follows:
�q � sq1; T � sT 1: ð18Þ
3. Spectral analysis

3.1. Quadratic form

Before applying the projections defined in the previous section, the linearized resistive MHD equations
(7)–(10) are written in quadratic form
kKðkÞ ¼ W ðkÞ; ð19Þ

where k ¼ 1; 2; 3; or 4 corresponds to the equation for the perturbed density q1, velocity v1, temperature T 1, or
vector potential A1, respectively. This quadratic form can be derived by multiplying the linearized equations
by the appropriate perturbed quantity and then to integrate over the plasma volume V.

The equation of the perturbed density (7) has been multiplied with the complex conjugate of the perturbed
density q�1. In this way the quadratic forms W ð1Þ and Kð1Þ are
W ð1Þ ¼
Z Z Z

q�1 �r � ðqv1Þ � r � ðq1VÞ½ �dV ; ð20Þ

Kð1Þ ¼
Z Z Z

q�1q1 dV : ð21Þ
For the equation of the perturbed velocity v1, temperature T1 and vector potential A1 the same strategy has
been used, multiplying with the complex conjugate of the perturbed velocity v�1, temperature T �1, and vector
potential A�1, respectively. For the perturbed velocity the quadratic form W ð2Þ reads
W ð2Þ ¼
Z Z Z

v�1 � ½�rP1 þH� qF� q1ðCþrUgravÞ�dV ð22Þ

¼
Z Z Z

P1r � v�1 dV þ
Z Z Z

v�1 �HdV �
Z Z Z

qv�1 � FdV

�
Z Z Z

q1v�1 � ðCþrUgravÞdV �
Z Z Z

n � v�1P1 dS; ð23Þ
where
P1 ¼ p1 þ B � B1; ð24Þ
H ¼ B � rB1 þ B1 � rB; ð25Þ
F ¼ V � rv1 þ v1 � rV; ð26Þ
C ¼ V � rV; ð27Þ
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and n is the normal to the surface S which encloses the plasma volume V. Furthermore, notice that P1 and H

are the perturbed total pressure and the linearized magnetic tension, respectively. The terms F and C combine
linearized flow effects and the centrifugal effects from the equilibrium. The quadratic form Kð2Þ is
Kð2Þ ¼
Z Z Z

qv�1 � v1 dV : ð28Þ
For the perturbed temperature, the quadratic forms W ð3Þ and Kð3Þ are
W ð3Þ ¼ �
Z Z Z

T �1ðq1V � rT þ qv1 � rT þ qV � rT 1ÞdV ð29Þ

� ðc� 1Þ
Z Z Z

T �1 ðqT 1 þ q1T Þr � Vþ pr � v1½ �dV ;

Kð3Þ ¼
Z Z Z

qT �1T 1 dV ; ð30Þ
and for the perturbed vector potential the forms are
W ð4Þ ¼
Z Z Z

A�1 � ½�B� v1 þ V� ðr � A1Þ � gr�r� A1�dV ð31Þ

¼ �
Z Z Z

A�1 � B� v1 dV þ
Z Z Z

A�1 � V� ðr � A1ÞdV

�
Z Z Z

gðr � A�1Þ � ðr � A1ÞdV þtgA�1 � ðr � A1Þ � ndS; ð32Þ

Kð4Þ ¼
Z Z Z

A�1 � A1 dV : ð33Þ
The currently implemented boundary conditions are the ones of a perfect conducting wall. For these condi-
tions, the normal velocity component, the normal magnetic field component and the tangential electric field
vanish at the wall. This leads to the boundary conditions
�v1jwall ¼ 0; A2jwall ¼ 0; A3jwall ¼ 0: ð34Þ

For astrophysical applications these boundary conditions are strictly speaking inappropriate. However, these
conditions have hardly any influence on sufficiently localized modes or global modes which are not signifi-
cantly affected by the position of the wall. Regularity of the solutions on the magnetic axis implies
�v1jaxis ¼ 0; A2jaxis ¼ 0; A3jaxis ¼ 0: ð35Þ
3.2. Discretization

The discretization we employ in combination with the previously defined projections as follows. In the
poloidal direction, the equations are discretized by making use of a spectral method. This means that every
perturbed quantity is written as a finite sum of Fourier components:
f1ðW; #;uÞ ¼
X

m

f̂ 1;mðWÞ exp½iðm#þ nuÞ�; ð36Þ
where m and n are the poloidal and toroidal mode numbers, respectively. In the toroidal direction there is only
need for one mode number due to the axisymmetry. In contrast, in the poloidal direction one needs more than
one mode number because of mode coupling due to non-circular cross-section, gravitational stratification, and
the toroidal geometry of the tokamak or accretion disk.

The normal W dependence of the perturbed quantity f̂ 1;mðWÞ is discretized using a finite element method
(FEM). The components �v1, A2 and A3 are expanded in cubic Hermite elements, while quadratic elements
are used to represent �v2, �v3 and A1. For the perturbed quantities �q and T also quadratic elements are used.
There are two basis functions per grid point used in the W-direction for both the cubic and quadratic elements.
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Using this mixed cubic and quadratic elements discretization prevents the creation of spurious eigenvalues
[43]. This choice of elements for the perturbed vector potential ensures that the divergence of the perturbed
magnetic field is numerically zero up to machine precision. In the quadratic forms mentioned above, we sub-
sequently replace the complex conjugate of the perturbed quantities with every finite element used in its FEM
expansion. This then corresponds to the standard Galerkin method in its weak form.

Applying this procedure leads to a generalized eigenvalue problem,
Fig. 2.
matrix
Ax ¼ kBx; ð37Þ

where x denotes the vector of the expansion coefficients of the state vector ½�q;�v1;�v2;�v3; T ;A1;A2;A3�T, and
matrices A and B correspond to the quadratic forms W ðkÞ and KðkÞ, respectively. The matrix elements of A
and B can be found in the appendix. The number of expansion coefficients N ¼ 16� N s � N m, where Ns

and Nm are the number of mesh points along the ‘‘radial’’ s-coordinate and the number of poloidal Fourier
harmonics (� eim#), respectively. The matrix B is self-adjoint and positive definite, but A is always non-Her-
mitian even without flow and resistivity (g ¼ 0). The matrices A and B have both block-tridiagonal structure,
as shown in Fig. 2. This structure is due to the fact that every element extends over two radial intervals. Each
sub-block of matrix A has the structure as indicated in Fig. 2, where the i; j’s indicate the matrix elements of A
for a given range of poloidal mode numbers m and m0. The matrix B has a similar sub-block structure and its
matrix elements can also be found in Appendix B. All elements are listed in Appendix B. A similar matrix
0

0

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8

5,1 5,2 5,3 5,4 5,5

6,2 6,3 6,6 6,7 6,8

7,2 7,3 7,6 7,7 7,8

8,2 8,6 8,7 8,8

(a) The block-tridiagonal structure of matrix A and B with dimension N ¼ 16� Ns � Nm. (b) The structure of each sub-block of
A.
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structure has been used in the CASTOR code [37]. Due to the non-Hermitian property of A one needs an algo-
rithm that can accurately solve the generalized eigenvalue problem (37). The two well known direct algo-
rithms, QR (QZ) and inverse vector iteration [37], could have been used, but instead PHOENIX solves the
generalized eigenvalue problem (37) by making use of the much more powerful iterative Jacobi–Davidson
algorithm [48]. This algorithm will be discussed in the next section.

Before continuing the discussion how the PHOENIX code can also compute the ideal continuous MHD
spectrum, we first briefly introduce the MHD continua themselves. The threefold ideal MHD spectrum con-
sists of fast, Alfvén and slow subspectra, and is organized about the continuous parts, i.e. the slow and Alfvén
continua, and a fast accumulation point at infinity. In the cylindrical limit (relevant for large aspect ratio and
circular cross-section), the ideal MHD equation can be reduced to one ordinary second order differential equa-
tion in the radial coordinate r. This equation has been introduced by Hain and Lüst [27] and generalized for
arbitary c by Goedbloed [12] for a static equilibrium. Hameiri [28] and Bondeson et al. [3] extended the cylin-
drical case to plasmas with flow but without gravity. Recently, Keppens et al. [36] have included gravity. The
inclusion of flow gives rise to a sixfold organization about Doppler shifted MHD continua, viz. Doppler
shifted Alfvén continua X	A and Doppler shifted slow continua X	S ,
X	A ¼ k � V	 xA ¼ nXþ ðM 	 1ÞxA; ð38Þ
X	S ¼ k � V	 xS ¼ nXþ ðM 	M cÞxA; ð39Þ
together with fast accumulation points at 	1 where the modes have a single exp½iðm#þ nuÞ� dependence in
the cylindrical limit (Goedbloed et al. [17]). Here, xA and xS are the Alfvén frequency and slow frequency.

Furthermore, the cusp M c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp=ðcp þ B2Þ

q
is the ratio of the sound speed over the magnetosonic speed.

Moreover, an additional Eulerian entropy continuum is given by
XE ¼ k � V ¼ nXþMxA; ð40Þ

which does not couple to the remainder of the spectrum, as shown by Goedbloed et al. [18]. This entropy
continuum will show up in any Eulerian computational approach for computing ideal MHD continua.

For the computation of the continuous MHD spectra, a method described by Poedts et al. [42] has been
used. This method, in essence, replaces on each individual flux surface the Hermite elements by log(�) and
the quadratic elements by 1/�, with small �. In this way the perturbed quantities approximate the singular
behaviour of the continuous spectrum as described by Pao [40] and Goedbloed [13] for a static, axisymmetric,
and toroidal plasma. Recently, Goedbloed et al. [17] have extended this work to plasmas with toroidal and
poloidal flows and gravity. In this procedure, one instead of two basis functions per grid point is sufficient.
One then obtains a small generalized eigenvalue problem per flux surface of order 8Nm. The resulting eigen-
value problem is solved using a QR method and a scan over all flux surfaces yields detailed information on all
MHD continua.

3.3. Jacobi–Davidson algorithm

The Jacobi–Davidson (JD) algorithm [48] has been used to compute the eigenvalues of our large general-
ized eigenvalue problem. For completeness, we present the basic steps involved in the JD algorithm, following
the description presented by Nool and van der Ploeg [39]. The generalized eigenvalue problem of the linearized
MHD equations (37) can be written as a standard eigenvalue problem
Qx ¼ lx; ð41Þ
where Q ¼ ðA� rBÞ�1B and we introduced an inverse shifted eigenvalue l ¼ 1=ðk� rÞ. Here, r is a specified
target frequency in whose neighborhood we wish to compute a number of eigenvalues and eigenvectors at
once.

In the JD algorithm the eigenvector x is approximated by a linear combination of k-search vector vj with
j = 1, 2, . . . ,k, where k is very small compared to the number of expansion coefficients N. Using the modified
Gram–Schmidt method [21], the vectors vj are made orthonormal to each other. The search directions vj are
used as columns for the N � k matrix Vk. Using this matrix the eigenvector x can be approximated by Vks for
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some k-vector s. Notice that the matrix Vk satisfies the following property: V�kVk ¼ Ik, where Ik is the unit k � k
matrix. Here, the star indicates the conjugate transpose.

Replace in the standard eigenvalue equation (41) the eigenvector x and the eigenvalue l by its approxima-
tion Vks and h, respectively. In this way the residual vector r ¼ QVks� hVks, which is orthogonal to the k
search vectors. The standard eigenvalue problem for the eigenvalue h becomes
Fig. 3.
numbe
modifi
V�kQVks ¼ hs: ð42Þ

The order of the matrix V�kQVk is k, which is small. In fact it can be so small, that this problem can be solved
directly by, for example, a QR method. The eigenvalue of this problem with the largest modulus is then used
to approximate the eigenvalue l. Notice that the vector s is its associated eigenvector.

The following procedure is used to obtain a new search direction. Let the normalized vector u ¼ Vks be the
approximation of the eigenvector x of the standard eigenvalue problem (41). Then the eigenvalue l can be
approximated by h ¼ u�Qu. We define the matrix P � uu�, which is the orthogonal projector onto the sub-
space spanned by fug. Its complementary projector IN � P projects a vector on a subspace perpendicular
to the subspace spanned by fug. This subspace is denoted by u?. Any vector x 2 CN can be written as
x ¼ x1 þ x2, with x1 2 spanfug and x2 2 u?. In this case, the eigenvector x can be written as x ¼ uþ z, where
the correction vector z ? u. The matrix Q can be restricted to u? as follows:
QP ¼ ðIN � PÞQðIN � PÞ: ð43Þ
Jacobi–Davidson algorithm adopted from Nool and van der Ploeg [39]. Here, itmax, tolJD, tolSOL, nev and MGS are the maximum
r of iterations, tolerance of the JD algorithm, tolerance for solving the correction equation, number of found eigenvalues and the
ed Gram–Schmidt method, respectively.
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Rewrite this equation to find an expression for Q and substitute this expression into the standard eigenvalue
problem (41) to obtain
Table
Compa
codes

m

[�4, 6]
[�3, 7]
[�8, 14

The la
ðQP � lIN Þz ¼ �rþ ðl� h� u�QzÞu; ð44Þ

where we used that Qu� hu ¼ r and z ? u. From this equation we derive that the eigenvalue l ¼ hþ u�Qz by
making use of r ? u. Since eigenvalue l is unknown and its best approximation is h, we have to replace l by h
to obtain the correction equation for z,
ðIN � PÞðQ� hIN ÞðIN � PÞz ¼ �r; ð45Þ

with u�z ¼ 0. The correction equation (45) only needs to be solved approximately to obtain a sufficient accu-
rate solution needed for the new search direction. An iterative method, like GMRES [44], could be used for
this. The approximated solution of the correction vector z is made orthogonal to the previous search vector
using the modified Gram–Schmidt method [21], and this yields the new search directions vkþ1. Then k is in-
creased by 1 and the procedure can be iterated. Our implementation of the JD method for the computations
for several eigenvalues is shown in Fig. 3. The typical values for the maximum number of iterations of JD
algorithm itmax ¼ 100, tolerance of JD algorithm tolJD ¼ 10�6, maximum number of iterations for solving
the correction equation itSOL ¼ 10, and tolerance for solving the correction equation tolSOL ¼ 10�4.

4. MHD spectral results for flowing plasmas

In the PHOENIX code the eigenvalues are normalized to the Alfvén time on the magnetic axis:
k̂ ¼ RMk=vA; ð46Þ

where RM and vA are the major radius of the magnetic axis and the Alfvén speed on the magnetic axis,
respectively.

4.1. Test cases for static and toroidally rotating Soloviev like equilibria: ideal unstable global modes

As a first test we compare the PHOENIX code with other existing codes, like CASTOR [37], ERATO [25],
MARS [4], NOVA [9] and PEST-1 [23], by investigating an isolated unstable global mode. For this test case,
we used the analytical solution of the Grad–Shafranov equation [22,46] given by Soloviev [49] for the equilib-
rium. For the cross-sections we consider two elliptical, E = 2, and one circular, E = 1, cross-section together
with inverse aspect ratio � = 1/3. The PHOENIX results are presented in Table 1, together with the results of
the other codes, as taken from Kerner et al. [37]. In Table 1, m, n, and qð0Þ are the poloidal mode number, the
toroidal mode number, and the safety factor at the magnetic axis, respectively. It is clear from this table that
the agreement between the different codes is within 1%.

As far as we know, there is no simple published test case for an equilibrium with purely toroidal flow.
Therefore, we start with an equilibrium based on the Soloviev solution of the first static test case. In case
the plasma rotates, the temperature is assumed to be a flux function. For the equilibrium the following flux
functions have been used:
I2ðWÞ ¼ A; q0ðWÞ ¼ 1;

p0ðWÞ ¼ ABð1� 0:9WÞ;
ð47Þ
1
rison of the eigenvalue k̂ for a specific Soloviev equilibrium with an inverse aspect ratio � = 1/3 from different ideal MHD spectral

n q(0) E PHOENIX CASTOR ERATO MARS NOVA PEST-1

�2 0.3 2 1.255 1.255 1.26 1.26 1.256 1.252
�2 0.7 2 0.284 0.284 0.284 0.284 0.283 0.283

] �3 0.75 1 0.05397 0.05384 0.0541 0.0533 – –

tter entries are adopted from Kerner et al. [37].
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where A is a scale factor which has to be computed as part of the equilibrium solution and B = 2.5. More de-
tails about equilibria with purely toroidal flow can be found in Appendix A. The cross-section has been spec-
ified by ellipticity E = 2, triangularity T = 0.2, and rectangularity Q = 0.01 and the inverse aspect ratio
� = 0.381966. The safety factor on the magnetic axis q(0) = 0.7. Fig. 4 shows the growth rate and oscillation
frequency as function of the rotation frequency X(0) on the magnetic axis. Here, we used a toroidal mode
Fig. 4. The growth rate (a) and oscillation frequency (b) for rigidly rotating equilibrium (solid) versus an equilibrium with sheared toroidal
flow (dashed). The rotation frequency X on the x-axis is the value on the magnetic axis and has been normalized with respect to the Alfvén
time on the magnetic axis.
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number n = �2 and poloidal mode numbers m = [�3, 7]. Computations are shown for both rigidly rotating, as
well as sheared rotating profiles X(W). It is clear from this figure that this particular unstable mode becomes
less unstable if one includes toroidal flow, regardless of the direction of the flow. If the toroidal flow has some
shear the mode becomes even more stable. This stabilizing effect has also been found by Chandra et al. [8] for
classical and neoclassical tearing modes. The figure also shows that the oscillation frequency scales linearly
with the rotation frequency on the magnetic axis (X ¼ const) ReðxÞ 
 �1:98Xð0Þ and X ¼ X0ð1�
0:9WÞ ) ReðxÞ 
 �1:02Xð0Þ).

4.2. Resistive internal kink mode

A severe test for a MHD stability code is the computation of the internal kink mode. In this case, we com-
pute the resistive internal kink mode. The equilibrium is specified by a circular cross-section, inverse aspect
ratio � = 0.1 and the profiles
Fig. 5.
p ¼ ABð1�WÞ; ð48Þ
hjui ¼ j0ð1�WÞ; ð49Þ
where hjui is the average toroidal current density. The parameters are chosen such that the safety factor on the
magnetic axis qðW ¼ 0Þ ¼ 0:9 and the average poloidal plasma beta bpol ¼ 0:1. The average poloidal plasma
beta is defined as
bp � 2

R R
p dS

1
2p

H
Bp � dl

� �2
; ð50Þ
where S is the area of the poloidal cross-section and l is the contour which enclosed the area S. For the sta-
bility analysis we have used a toroidal mode number n = �1 and poloidal mode numbers m = [�1, 3]. To ob-
tain an accurate solution, 1001 mesh points have been used in combination with mesh accumulation around
the q = 1 and q = 2 surface. Fig. 5 shows the growth rate of the resistive internal kink mode against the resis-
tivity. The resistive mode seen in the figure is the resistive interchange mode which scales as g1=3. This numer-
ical example shows that the PHOENIX code can accurately handle small values for resistivity, at least as small
The growth rate of the resistive internal kink mode for a equilibrium with a circular cross-section and inverse aspect ratio � ¼ 0:1.
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as 10�11. A detailed study of resistive instabilities in a tokamak is given by, for example, Huysmans et al. [35]
and Bondeson et al. [5].

4.3. Toroidal Flow induced Alfvén Eigenmode

Another stringent test is to find the stable, resonantly damped, global Toroidal Flow induced Alfvén Eigen-
mode (TFAE) which was found by van der Holst et al. [31]. They use an equilibrium where the density is
assumed to be a flux function. We use the following flux functions for the equilibrium:
I2ðWÞ ¼ Að1� 0:0285Wþ 0:01045W3Þ; qðWÞ ¼ 1� 0:85W;

p0ðWÞ ¼ ABð1� 1:1Wþ 0:2W2Þ; XðWÞ ¼ C;
ð51Þ
where A = 87, B = 0.0217 and C = 0.0952. These flux functions differ slightly from the ones used by van der
Holst et al. [31]. Using the same strategy as described in that article we were able to find the TFAE, which has
in our case Re(x) = �0.197. The computations are done for a toroidal mode number n = �1 and poloidal
mode number m = [�1, 5]. The mode is resistively damped by resonant interaction with the MHD continua.
The g-convergence study of this TFAE mode is shown in Fig. 6a, similar to [41]. This study shows that the
TFAE damping rate ImðxÞ 
 �1:4� 10�4. Furthermore, one needs at least 801 grid points to reach conver-
gence. The

ffiffiffiffi
W
p

-dependence of the perturbed normal velocity for three different poloidal mode numbers has
been plotted in Fig. 6b. This shows that the m = 2 harmonic is the most dominant one. The near singular
behaviour at

ffiffiffiffi
W
p

 0:90 is due to the interaction with the MHD continua.

4.4. MHD continua in the presence of toroidal rotation and gravity

The following example shows that FINESSE and PHOENIX can also be used for astrophysical applica-
tions, like a stability analysis of a two-dimensional accretion torus or disk. Our accretion disk is an axisym-
metric torus of fixed cross-sectional shape, within which a two-dimensional equilibrium with toroidal flow
and gravity has been constructed. For this case, we specify the equations which the FINESSE code solves,
namely
R
o

oR
1

R
oW
oR

� �
þ o

2W

oZ2
¼ � 1

2

dI2

dW
� R2 op

oW
; ð52Þ

op
oR

����
W¼const

¼ qRX2 � q
oUgrav

oR
; ð53Þ

op
oZ

����
W¼const

¼ �q
oUgrav

oZ
; ð54Þ
where the Newtonian gravitational potential Ugrav ¼ �GM�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Z2

p
. The latter two equations can be solved

analytically under the assumption that the density, the temperature or the entropy is a flux functions. All three
cases are currently implemented in the FINESSE code.

For this example the density is assumed to be a flux function. For the equilibrium the following flux func-
tions have been used:
I2ðWÞ ¼ Að1� 0:0385Wþ 0:02W2 þ 0:00045W3Þ; qðWÞ ¼ 1;

p0ðWÞ ¼ ABð1� 0:9WÞ; XðWÞ ¼ Cð1� 0:9WÞ;
ð55Þ
where A = 112, B = 0.01 and C = 0.1. The cross-section of the accretion disk is circular and we used an inverse
aspect ratio � = 0.1. The plasma beta b ¼ 2p=B2 increases monotonically from 0.63 at the inner part to 0.76 at
the outer part of the disk. The ratio of the toroidal velocity to the Keplerian velocity is in the range
vu=vKepler ¼ ½0:085; 1:049�. The minimum value correspond to boundary locations close to the last closed flux
surface while the maximum value is reached close to the centre of the accretion disk. Furthermore, the
gravitational potential on the magnetic axis GM �=RM ¼ �0:35. This value has been scaled with respect to



Fig. 6. (a) Continuum damping of the flow-induced global gap mode, and (b) the normal component of the perturbed velocity as function
of the radial flux coordinate s �

ffiffiffiffi
W
p

; g ¼ 5� 10�8;Ng ¼ 801;m ¼ ½�1; 5�.
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the Alfvén speed on the magnetic axis. For the computations, a toroidal mode number n = �1 and poloidal
mode numbers m = [�3, 5] have been used. Fig. 7 shows the sub-spectrum of the MHD continua. From plot
(b) and (c) it is clear that in this case the MHD continua contain overstable modes. These modes appear due to
the presence of toroidal rotation and gravity in a manner similar to the unstable continua for toroidally rotat-
ing tokamak equilibria studied by van der Holst et al. [32]. A systematic investigation of the influence of the
gravity on these MHD continua is currently ongoing.



Fig. 7. Real (a), and imaginary (b) parts of the subspectrum of the MHD continua as function of the radial flux coordinate s �
ffiffiffiffi
W
p

and (c)
subspectrum of the MHD continua in the complex plane for a toroidal mode number n = �1 and poloidal mode numbers m = [�3, 5].
Overstable continuum modes in accretion disks exist due to the presence of toroidal flow and a strong gravitational field.
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4.5. Localized gap modes in the presence of toroidal and poloidal flow

In this section we present spectral results of localized modes which appear inside the gap of the continuous
spectrum. This is done for an equilibrium which contains dynamical effects due to both toroidal and poloidal
flow. For the tokamak equilibrium we used the following flux flunctions:f Computational Physics 226 (2007) 509–533525
Fig. 8.
the rad

ffff
W

p

numbe
K1 ¼ A� ð1� 0:4Wþ 0:2W2Þ;
K2A� 1� 10�3 � ð1� 1:6Wþ 0:8W2Þ;
K3 ¼ A� 1� 10�4;

K4 ¼ 5� 102;

K5 ¼ A� 0� ð1� 0:85WÞ;

ð56Þ
where A = 0.142 and the Ki’s are the same flux functions as those defined in the FINESSE paper [2]. Further-
more, the tokamak has a circular cross-section and an inverse aspect ratio � = 0.05. The solutions of the alge-
braic equation for the squared Alfvén Mach number M2 are selected in the slow flow domain, i.e. the next
elliptic flow regime. The computation of the continuous MHD spectrum and the localized gap modes are done
for a toroidal mode number n = �1 and poloidal mode numbers m = [�1, 5]. Fig. 8 shows a part of the con-
tinuous MHD spectrum, which has a jDmj = 1 gap in the Alfvén spectra at s 
 0.82. In this gap there are indi-
cations of a cluster sequence of ideal localized gap modes, which were found to follow anti-Sturmian
properties. For one-dimensional problems, Sturmian and anti-Sturmian behaviour can be proven using the
oscillation theorem (Goedbloed and Sakanaka [20]). The zeroth and the second gap mode found here are
shown in Fig. 9 which have an eigenfrequency of x = �0.5088 and x = �0.5072, respectively. The eigenfe-
quency of the first gap mode, not shown in a figure, is x = �0.5080. Fig. 9 shows that the m = 1 and
m = 2 harmonics are the dominant ones. These localized modes seem to cluster towards the extremum of
one of the Alfvén continuum branches.
The real part of the subspectrum of the MHD continua of a toroidally and poloidally rotating tokamak equilibrium as function of
ial flux coordinates�
ffff

. ThejDmj ¼ 1 gap in Alfve´n spectra is located ats
0:82.A

	
m

are the Alfvén modes for a poloidal mode
rmand ± indicates if it is forward (+) or backward (ff) Doppler shifted with respect to the entropy continuum.



Fig. 9. The tangential component of the perturbed velocity (a) of the zeroth gap mode with eigenfrequency x ¼ �0:5088, and (b) of the
second gap mode with eigenfrequency x ¼ �0:5072 as function of the radial flux coordinates �
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p

; Ng ¼ 1001;m ¼ ½�1; 5�.

526 J.W.S. Blokland et al. / Journal of Computational Physics 226 (2007) 509–533
4.6. MHD continua for gravity dominated accretion disks with toroidal and poloidal flow

In this last example we show that the PHOENIX code is able to compute the full MHD continua in the
presence of toroidal and poloidal flow and gravity. To demonstrate this, equilibrium C of the paper by Goedb-
loed et al. [17] has been used. The flux functions specified in this paper have also been implemented into the
FINESSE code. For the toroidal and poloidal mode numbers we used the same ones as specified in the paper,
which are a toroidal mode number n = �1 and poloidal mode numbers m = [�2, 6]. A part of the MHD con-
tinuous spectrum is shown in Fig. 10, which reproduces Fig. 13 presented by Goedbloed et al. [17] where a



Fig. 10. Subspectrum of the MHD continua in the complex plane for a toroidal mode number n = �1 and poloidal mode numbers
m = [�2, 6].
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detailed explanation of this spectrum is given. Part of the continuous modes become overstable or unstable
due to a six-fold coupling scheme between Alfvén and slow continua branches of neighboring poloidal modes
numbers m. This can occur at every rational q-surface. The presence of large, ‘‘transonic’’ poloidal flow and
strong gravitational field causes mode-locking and leads to violent instabilities with very localized
eigenfunctions.

5. Conclusions

The ideal or resistive MHD spectrum for tokamaks or accretion disks can be computed by the PHOENIX
code. The stationary MHD equilibrium considered may include purely toroidal flow or both toroidal and
poloidal flow. The numerical computations are done in a specific flux-coordinate system and make use of
an appropriate choice for the projection of the perturbed velocity and perturbed vector potential. A mixed
Fourier and finite element method has been used for the discretization which results in a large-scale non-
Hermitian general eigenvalue problem. This generalized eigenvalue problem is solved using the iterative
Jacobi–Davidson algorithm.

The test results for a Soloviev equilibrium show excellent agreement, typically within 1%, with other exist-
ing MHD spectral codes. We included a new reference test case with purely toroidal flow demonstrating that
the flow has a stabilizing effect on the particular unstable mode computed regardless of the direction of the
flow. The resistive internal kink mode has been computed for different values of the resistivity. These compu-
tations show that the code can accurately handle small values for the resistivity at least down to 10�11. The
code reproduced the Toroidal Flow induced Alfvén Eigenmode [31], which demonstrates that the code can
accurately handle cases with resistivity and flow effects occuring simultaneously.

For a tokamak plasma in the presence of toroidal and poloidal flow localized gap modes have been presented.
These ideal gap modes appear to cluster to the local extremum of one of the branches of the MHD continua.

For an accretion torus or disk two cases where the MHD continua have been calculated are presented in
detail. Both are stratified due to the presence of a central object in the origin of the surrounding torus where
one example considered purely toroidal flow and the other one both toroidal and poloidal flow. Both show
that the MHD continua can contain unstable and overstable modes due to the presence of (strong) gravita-
tional fields in combination with equilibrium flow-driven dynamics. Currently, an investigation is ongoing
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on the influence of gravity on the MHD continua in the case of equilibria with purely toroidal flow. Future
work will be done on the localized gap modes in the presence of toroidal and poloidal flow. This will be done
numerically as well as analytically.
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Appendix A. Equilibrium with purely toroidal flow with or without gravity

For the equilibrium with purely toroidal flow we neglect the time-derivative in the momentum Eq. (2). This
equation is then projected in three different ways, namely in the toroidal direction, parallel, and perpendicular
to the poloidal magnetic field. The toroidal projection reveals that the poloidal stream function I ” RBu is a
flux function, i.e. I = I(W). The projection parallel to the poloidal magnetic field leads to two equations,�
op
oR

���
W¼const

¼ q RX2 � oU
oR

� �
;

op
oZ

����
W¼const

¼ �q
oU
oZ

;

ðA:1Þ
where the pressure p = p(W; R, Z). The last projection, perpendicular to the poloidal magnetic field, results in
the extended Grad–Shafranov equation,
R2r � 1

R2
rW

� �
¼ �I

dI
dW
� R2 op

oW
: ðA:2Þ
The two equations parallel to the poloidal magnetic field (A.1) can be solved analytically under the assumption
that the temperature T, the density q or the entropy S ¼ pq�c is a flux function. The temperature can be assumed
constant on a flux surface due to the high thermal conductivity along the field lines. This assumption is valid at
least on transport time scales, which is long compared to the Alfvén time. In this case, the pressure reads
pðW; R; ZÞ ¼ p0ðWÞ exp ðR2 � R2
0ÞKT ðWÞ �

UðR; ZÞ
T ðWÞ

� 	
; ðA:3Þ
where KT � X2=ð2T Þ and R0 is the geometric axis of the tokamak or accretion disk. The flux function p0 cor-
responds to the pressure for a static equilibrium without gravity. The extended Grad–Shafranov equation
(A.2) reduces to
R2r � 1

R2
rW

� �
¼ �I

dI
dW
� R2 dp0

dW
þ p0 ðR2 � R2

0Þ
dKT

dW
þ U

T 2

dT
dW

� 	
 �
exp R2 � R2

0

� �
KT �

U
T

� 	
: ðA:4Þ
However, on MHD time scales, it also possible to assume q = q(W). Using this assumption, the pressure can
be written as
pðW; R; ZÞ ¼ p0ðWÞ 1þ ðR2 � R2
0ÞKqðWÞ �

UðR; ZÞ
T qðWÞ

� 	
; ðA:5Þ
where the quasi-temperature T q � p0=q and Kq � X2=ð2T qÞ. In this case the extended Grad–Shafranov equa-
tion (A.2) can be written as
R2r � 1

R2
rW

� �
¼ � I

dI
dW
� R2 dp0

dW
þ p0 ðR2 � R2

0Þ
dKq

dW
þ U

T 2
q

dT q

dW

" #(
1þ ðR2 � R2

0ÞKq �
U
T q

� 	�1
)

� 1þ ðR2 � R2
0ÞKq �

U
T q

� 	
: ðA:6Þ
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The last case is under the assumption that the entropy S is a flux function. This assumption has the advantage
that it permits a natural extension to toroidal and poloidol flows, where the entropy has to be a flux function
(Zehrfeld et al. [54] and Hameiri [29]). In this case the pressure reads
pðW; R;ZÞ ¼ p0ðWÞ 1þ c� 1

c
ðR2 � R2

0ÞKSðWÞ �
UðR; ZÞ
T SðWÞ

� 	
 �c=ðc�1Þ

ðA:7Þ
and the extended Grad–Shafranov equation (A.2) reduces to
R2r � 1

R2
rW

� �
¼ � I

dI
dW
� R2

(
dp0

dW
þ p0 ðR2 � R2

0Þ
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dW
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dT S

dW
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1þ c� 1

c
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U
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)
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c
ðR2 � R2
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U
T S

� 	
 �c=ðc�1Þ

; ðA:8Þ
where the quasi-temperature T S � Sqc�1
0 and KS � X2=ð2T SÞ.

The extended Grad–Shafranov equation without gravity of the first two cases have been published by van
der Holst et al. [32]. For the three cases the density can be easily derived by inserting the corresponding pres-
sure back into the momentum equations parallel to the poloidal magnetic field (A.1). The density can then be
written as
qðW; R; ZÞ ¼ q0ðWÞ �

R2 � R2
0

� �
KT � U

T

� 
1

1þ c� 1

c
R2 � R2

0

� �
KS �

U
T S

� 	
 �1=ðc�1Þ

8>>><
>>>:

ðA:9Þ
for the temperature, density or entropy as flux function, respectively. Here, the flux function q0 is the density in
the case of a static equilibrium without gravity.
Appendix B. Matrix elements

For comparison with the matrix elements used in the CASTOR code [37] for spectral diagnosis of static
equilibria, we list the matrix elements as occuring for stationary equilibria with toroidal and poloidal flow
and external gravity. The matrix elements of the matrix B are:
Bð1; 1Þ ¼ hh � fJ
s2
; Bð4; 3Þ ¼ hh � g22

q0J
f
;

Bð2; 2Þ ¼ HH � g11

q0J
f
; Bð4; 4Þ ¼ hh � ðg22 þ q2R2Þ q0J

f
;

Bð2; 3Þ ¼ Hh � �ig12

q0J
f
; Bð5; 5Þ ¼ hh � f q0J

s2
;

Bð2; 4Þ ¼ Hh � �ig12

q0J
f
; Bð6; 6Þ ¼ hh � g22

R2

fJ
;

Bð3; 2Þ ¼ hH � ig12

q0J
f
; Bð6; 7Þ ¼ hH � �ig12

R2

fJ
;

Bð3; 3Þ ¼ hh � g22

q0J
f
; Bð7; 6Þ ¼ Hh � ig12

R2

fJ
;

Bð3; 4Þ ¼ hh � g22

q0J
f
; Bð7; 7Þ ¼ HH � g11

R2

fJ
;

Bð4; 2Þ ¼ hH � ig12

q0J
f
; Bð8; 8Þ ¼ HH � fJ

R2
;
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and the elements of the matrix A are:
Að1;1Þ ¼ hh � �i
f
s2

v0 m0
1

q0

� i
o

o#

1

q0

� �� 	
þ nJ

V u

R


 �
;

Að1;2Þ ¼ hH 0 � �q0J
s
þ hH � �1

s
o

os
ðq0JÞ;

Að1;3Þ ¼ hh � 1
s

i
o

o#
ðq0JÞ �m0q0J

� 	
;

Að1;4Þ ¼ hh � 1
s

i
o

o#
ðq0JÞ � ðm0 þ nqÞq0J

� 	
;

Að2;1Þ ¼ H 0h � T 0J
s
þHh � 1

s
T 0

oJ
os
� J

oUgrav

os



�v0

2 1

q0

o

o#

g12

q0J

� �
� 1

2

1

q2
0J

og22

os

� 	
þ 1

2
J

V u

R

� �2
oR2

os

)
;

Að2;2Þ ¼ HH � �1

f
iv0 �i

og11

o#
þm0g11

� �
þ g12

ov0

os

�
�v0

g12

q0J
o

os
ðq0JÞ þ ing11q0J

V u

R

	
;

Að2;3Þ ¼ Hh � �1

f
v0 m0g12� i

og12

o#
� iq0J

o

o#

g12

q0J

� �
þ i

og22

os

� 	

þng12q0J

V u

R

�
;

Að2;4Þ ¼ Hh � �1

f
v0 m0g12� i

og12

o#
� iq0J

o

o#

g12

q0J

� �
þ i

og22

os

� 	

þng12q0J

V u

R
þ iqq0J

V u

R
oR2

os

�
;

Að2;5Þ ¼ H 0h � q0J
s
þHh � q0

s
oJ
os
;

Að2;6Þ ¼ H 0h � 1
f

n
g22

J
�m0q

R2

J

� �
þHh � 1

f
m0q

o

os
R2

J

� ��
�n

o

os
g22

J

� �
þ in

g12

J
m0 þ nqð Þ þ 2n

o

o#

g12

J

� �	
;

Að2;7Þ ¼ H 0H 0 � q
f

R2

J
þH 0H � � in

f
g12

J
þHH 0 � �q

f
o

os
R2

J

� �
þHH � n

f
g11

J
ðm0 þ nqÞ � i

o

o#

g11

J

� �� 	
;

Að2;8Þ ¼ H 0H 0 � �1

f
g22

J
þH 0H � im

0

f
g12

J
þHH 0 � 1

f
o

os
g22

J

� �
� i

g12

J
ðm0 þ nqÞ � 2

o

o#

g12

J

� �� 	

þHH � �m0

f
g11

J
ðm0 þ nqÞ � i

o

o#

g11

J

� �� 	
;

Að3;1Þ ¼ hh � 1
s

mT 0J þ iT 0

oJ
o#
� iJ

oUgrav

o#
� 1

2
iv0

2

J
o

o#

g22

q2
0J 2

� ��
þ1

2
iJ

V u

R

� �2
oR2

o#

#
;

Að3;2Þ ¼ hH � 1
f

v0 m0g12� iq0J
o

os
g22

q0J

� �� 	
� ig22

ov0

os
þ ng12q0J

V u

R


 �
;

Að3;3Þ ¼ hh � �1

f
v0 im0g22þ q0J

o

o#

g22

q0J

� �� 	
þ ing22q0J

V u

R


 �
;

Að3;4Þ ¼ hh � �1

f
v0 im0g22þ q0J

o

o#

g22

q0J

� �� 	

þing22q0J

V u

R
� qq0J

V u

R
oR2

o#

�
;

Að3;5Þ ¼ hh � 1
s

mq0J þ iq0

oJ
o#

� �
;

Að3;6Þ ¼ hh � 1
f
�n

g22

J
ðm0 �mþ nqÞ þ in

o

o#

g22

J

� ��
�mm0q

R2

J
þ im0q

o

o#

R2

J

� �	
;

Að3;7Þ ¼ hH 0 � q
f

m
R2

J
� i

o

o#

R2

J

� �� 	
þ hH � n

f
i
g12

J
ðm0 �mþ nqÞ þ o

os
g22

J

� �� 	
;

Að3;8Þ ¼ hH 0 � 1
f

g22

J
ðm0 �mþ nqÞ � i

o

o#

g22

J

� �� 	
þ hH � �m0

f
i
g12

J
ðm0 �mþ nqÞ þ o

os
g22

J

� �� 	
;
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Að4;1Þ ¼ hh � 1
s
ðmþ nqÞT 0J þ iT 0

oJ
o#
� 1

2
iv0

2

J
o

o#

g22

q2
0J 2

� ��
þ1

2
iJ

V u

R

� �2
oR2

o#
� iqv0

1

q0

o

o#
ðRV uÞ � iJ

oUgrav

o#

#
;

Að4;2Þ ¼ hH � �1

f
v0 �m0g12 þ iq0J

o

os
g22

q0J

� �� 	

þ ig22

ov0

os
� ng12q0J

V u

R
þ iqq0J

o

os
ðRV uÞ

�
;

Að4;3Þ ¼ hh � �1

f
v0 im0g22 þ q0J

o

o#

g22

q0J

� �� 	

þ ing22q0J

V u

R
þ qq0J

o

o#
ðRV uÞ

�
;

Að4;4Þ ¼ hh � �1

f
v0 im0ðg22 þ q2R2Þ þ q0J

o

o#

g22

q0J

� �
þ q2 oR2

o#

� 	


þinq0Jðg22þ q2R2ÞV u

R
þ qq0JR2 o

o#

V u

R

� ��
;

Að4;5Þ ¼ hh � 1
s
ðmþ nqÞq0J þ iq0

oJ
o#

� 	
;

Að4;6Þ ¼ hh � 1
f

n
g22

J
ðm�m0Þ þ in

o

o#

g22

J

� ��
þ m0q

R2

J
ðm0 �mÞ þ inq2 o

o#

R2

J

� �	
;

Að4;7Þ ¼ hH 0 � q
f

R2

J
ðm�m0Þ þ hH � n

f
i
g12

J
ðm0 �mÞ

h
þ o

os
g22

J

� �
þ q

o

os
ðRBuÞ

	
;

Að4;8Þ ¼ hH 0 � 1
f

g22

J
ðm0 �mÞ � i

o

o#

g22

J

� �
� iq2 o

o#

R2

J

� �� 	

þ hH �m
0

f
iðm�m0Þg12

J
� o

os
g22

J

� �
� q

o

os
ðRBuÞ

� 	
;

Að5;1Þ ¼ hh � � f
s2

v0
1

q0

oT 0

o#
þ ðc� 1ÞT 0

o

o#

1

q0

� �� 	
;

Að5;2Þ ¼ hH 0 � �ðc� 1Þp0J
s
þ hH � �1

s
q0J

oT 0

os
þ ðc� 1Þp0

oJ
os

� 	
;

Að5;3Þ ¼ hh � 1
s

iq0J
oT 0

o#
� ðc� 1Þ m0p0J � ip0

oJ
o#

� �� 	
;

Að5;4Þ ¼ hh � 1
s

iq0J
oT 0

o#
� ðc� 1Þ ðm0 þ nqÞp0J � ip0

oJ
o#

� 	
 �
;

Að5;5Þ ¼ hh � � f
s2

v0 im0 � ðc� 1Þ 1

q0

oq0

o#

� 	
þ inq0J

V u

R


 �
;

Að6;2Þ ¼ hH � ig12

RBu

f
;

Að6;3Þ ¼ hh � g22

RBu

f
;

Að6;6Þ ¼ hh � �R2

fJ
im0v0

g22

q0J
þ ing22

V u

R
þ g

n2

R2
g22þmm0

� �� 	
;

Að6;7Þ ¼ hH 0 �R
2

fJ
iv0

g22

q0J
þmg

� �
þ hH � ng12

R2

fJ
�V u

R
þ in

R2
g

� �
;

Að6;8Þ ¼ hH 0 �R
2

fJ
g22 i

V u

R
þ n

R2
g

� �
þ hH �R

2

fJ
m0g12

V u

R
� i

n

R2
g

� �
;

Að7;2Þ ¼ HH � �RBu

f
g11;

Að7;3Þ ¼ Hh �RBu

f
ig12;
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Að7;6Þ ¼ H 0h �R
2

fJ
gm0 þHh �R

2

fJ
g12 v0m0

1

q0J
þ n

V u

R
� i

n2

R2
g

� �
;

Að7;7Þ ¼ H 0H 0 � �gR2

fJ
þHH 0 � �v0

f
g12

q0J
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J
þHH � �ng11
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fJ
i
V u

R
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R2
g

� �
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fJ
�V u
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� �
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i
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� �
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f

g22

J
þHh � imn

g
f

g12

J
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g
f

g12
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1
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f

g11

J

� �
;

Að8;8Þ ¼ H 0H 0 � � g
f
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J
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1
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þm
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